Exponential bounds for minimum contrast estimators
نویسندگان
چکیده
The paper focuses on general properties of parametric minimum contrast estimators. The quality of estimation is measured in terms of the rate function related to the contrast, thus allowing to derive exponential risk bounds invariant with respect to the detailed probabilistic structure of the model. This approach works well for small or moderate samples and covers the case of a misspecified parametric model. Another important feature of the presented bounds is that they may be used in the case when the parametric set is unbounded and non-compact. These bounds do not rely on the entropy or covering numbers and can be easily computed. The most important statistical fact resulting from the exponential bonds is a concentration inequality which claims that minimum contrast estimators concentrate with a large probability on the level set of the rate function. In typical situations, every such set is a root-n neighborhood of the parameter of interest. We also show that the obtained bounds can help for bounding the estimation risk, constructing confidence sets for the underlying parameters. Our general results are illustrated for the case of an i.i.d. sample. We also consider several popular examples including least absolute deviation estimation and the problem of estimating the location of a change point. What we obtain in these examples slightly differs from the usual asymptotic results presented in statistical literature. This difference is due to the unboundness of the parameter set and a possible model misspecification. AMS 2000 subject classifications: Primary 62F10; secondary 62J12,62F25.
منابع مشابه
Empirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations
The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...
متن کاملShrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata
Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...
متن کاملExplicit Link Parameter Estimators Based on End-to-End Measurements
In this paper we present and analyze simple explicit link parameter estimators that are constructed solely from end-to-end measurements for networks with general topology. These estimators are easy to implement, compute, and analyze. For Bernoulli link state variables as in link loss inference, we establish the asymptotic normality of the explicit estimators and compute their asymptotic varianc...
متن کاملInferences for Extended Generalized Exponential Distribution based on Order Statistics
‎Recently‎, ‎a new distribution‎, ‎named as extended generalized exponential distribution‎, ‎has been introduced by Kundu and Gupta (2011). ‎In this paper‎, ‎we consider the extended generalized exponential distribution with known shape parameters α and β. ‎At first‎, ‎the exact expressions for marginal and product moments of o...
متن کاملPitman-Closeness of Preliminary Test and Some Classical Estimators Based on Records from Two-Parameter Exponential Distribution
In this paper, we study the performance of estimators of parametersof two-parameter exponential distribution based on upper records. The generalized likelihood ratio (GLR) test was used to generate preliminary test estimator (PTE) for both parameters. We have compared the proposed estimator with maximum likelihood (ML) and unbiased estimators (UE) under mean-squared error (MSE) and Pitman me...
متن کامل